INTERMEDIATE Algebra Within Reach 6e

ronerson

Solutions, Interactivity, Videos, & Tutorial Help at AlgebraWithinReach.com

Common Formulas

Distance

d = rt

Temperature

 $F = \frac{9}{5}C + 32$

F = degrees Fahrenheit C = degrees Celsius

d = distance traveled

t = timer = rate

Simple Interest

I = Prt

Ι	= interest
P	= principal
r	= annual interest rate
t	= time in years

Compound Interest

 $A = P \left(1 + \frac{r}{n} \right)^{nt}$

A = balance P = principal r = annual interest rate n = compoundings per year t = time in years

Coordinate Plane: Midpoint Formula

Midpoint of line segment joining (x_1, y_1) and (x_2, y_2) $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

Coordinate Plane: Distance Formula

d = distance between points (x_1, y_1) and (x_2, y_2) *d* = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Quadratic Formula

Solutions of $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Rules of Exponents

(Assume $a \neq 0$ and $b \neq 0$.) $a^{0} = 1$ $a^{m} \cdot a^{n} = a^{m+n}$ $(ab)^{m} = a^{m} \cdot b^{m}$ $(a^{m})^{n} = a^{mn}$ $\frac{a^{m}}{a^{n}} = a^{m-n}$ $\left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}}$ $a^{-n} = \frac{1}{a^{n}}$ $\left(\frac{a}{b}\right)^{-n} = \frac{b^{n}}{a^{n}}$ **Basic Rules of Algebra**

Commutative Property of Addition a + b = b + a

Commutative Property of Multiplication ab = ba

Associative Property of Addition

(a+b)+c=a+(b+c)

Associative Property of Multiplication (ab)c = a(bc)

Left Distributive Property a(b + c) = ab + ac

Right Distributive Property

(a+b)c = ac + bc

Additive Identity Property a + 0 = 0 + a = a

Multiplicative Identity Property

 $a \bullet 1 = 1 \bullet a = a$

Additive Inverse Property a + (-a) = 0

Multiplicative Inverse Property $a \cdot \frac{1}{a} = 1, \quad a \neq 0$

Properties of Equality

Addition Property of Equality If a = b, then a + c = b + c.

Multiplication Property of Equality If a = b, then ac = bc

Cancellation Property of Addition If a + c = b + c, then a = b.

Cancellation Property of Multiplication If ac = bc, and $c \neq 0$, then a = b.

Zero Factor Property

If ab = 0, then a = 0 or b = 0.

SIXTH EDITION

SIXTH EDITION

Ron Larson

The Pennsylvania State University The Behrend College

With the assistance of Kimberly Nolting

Hillsborough Community College

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for materials in your areas of interest.

Intermediate Algebra Within Reach, Sixth Edition

Ron Larson

Senior Publisher: Charlie Van Wagner Senior Acquiring Sponsoring Editor: Marc Bove Associate Development Editor: Stefanie Beeck Assistant Editor: Lauren Crosby Senior Editorial Assistant: Jennifer Cordoba Media Editor: Bryon Spencer Senior Brand Manager: Gordon Lee Senior Market Development Manager: Danae April Content Project Manager: Jill Quinn Manufacturing Planner: Doug Bertke Rights Acquisition Specialist: Shalice Shah-Caldwell Text and Cover Designer: Larson Texts, Inc. Cover Image: front cover, ©iStockphoto.com/Christopher Futcher; back cover, ©iStockphoto.com/4x6 Compositor: Larson Texts, Inc. © 2014, 2010, 2005 Brooks/Cole, Cengage Learning

WCN: 02-200-203

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at Cengage Learning Customer & Sales Support, 1-800-354-9706.

For permission to use material from this text or product, submit all requests online at **www.cengage.com/permissions.** Further permissions questions can be emailed to **permissionrequest@cengage.com.**

Library of Congress Control Number: 2012947671

Student Edition: ISBN-13: 978-1-285-08741-2 ISBN-10: 1-285-08741-0

Brooks/Cole

20 Channel Center Street Boston, MA 02210 USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil and Japan. Locate your local office at International.cengage.com/region

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

For your course and learning solutions, visit www.cengage.com.

Purchase any of our products at your local college store or at our preferred online store **www.cengagebrain.com**.

Instructors: Please visit **login.cengage.com** and log in to access instructor-specific resources.

Printed in the United States of America

1 2 3 4 5 6 7 16 15 14 13 12

Contents

1 🕨	FUNDAMENTALS OF ALGEBRA	1
-	1.1 The Real Number System	2
	1.2 Operations with Real Numbers	10
	1.3 Properties of Real Numbers	18
	Mid-Chapter Quiz	26
	1.4 Algebraic Expressions	28
	1.5 Constructing Algebraic Expressions	36
	Chapter Summary	44
	Review Exercises	46
	Chapter Test	48
2 •	LINEAR EQUATIONS AND INEQUALITIES	49
_	2.1 Linear Equations	50
	2.2 Linear Equations and Problem Solving	58
	2.3 Business and Scientific Problems	66
	Mid-Chapter Quiz	76
	2.4 Linear Inequalities	78
	2.5 Absolute Value Equations and Inequalities	86
	Chapter Summary	94
	Review Exercises	96
	Chapter Test	100
3 🕨	GRAPHS AND FUNCTIONS	101
	3.1 The Rectangular Coordinate System	102
	3.2 Graphs of Equations	110
	3.3 Slope and Graphs of Linear Equations	118
	3.4 Equations of Lines	126
	Mid-Chapter Quiz	134
	3.5 Graphs of Linear Inequalities	136
	3.6 Relations and Functions	144
	3.7 Graphs of Functions	152
	Chapter Summary	160
	Review Exercises	162
	Chapter Test	166
≙►	SYSTEMS OF EQUATIONS	
	AND INEQUALITIES	167
	4.1 Systems of Equations	168
	4.2 Linear Systems in Two Variables	176
	4.3 Linear Systems in Three Variables	184
	Mid-Chapter Quiz	192
	4.4 Matrices and Linear Systems	194
	4.5 Determinants and Linear Systems	204
	4.6 Systems of Linear Inequalities	214
	Chapter Summary	222
	Review Exercises	224
	Chapter Test	227
	Cumulative Test: Chapters 1–4	228

5 🕨	POL	YNOMIALS AND FACTORING	229
	5.1	Integer Exponents and Scientific Notation	230
	5.2	Adding and Subtracting Polynomials	238
	5.3	Multiplying Polynomials	246
		Mid-Chapter Quiz	254
	5.4	Factoring by Grouping and Special Forms	256
	5.5	Factoring Trinomials	264
	5.6	Solving Polynomial Equations by Factoring	272
		Chapter Summary	280
		Review Exercises	282
		Chapter Test	286
6 🕨	RAT	IONAL EXPRESSIONS, EQUATIONS,	
	AND	FUNCTIONS	287
	6.1	Rational Expressions and Functions	288
	6.2	Multiplying and Dividing Rational Expressions	296
	6.3	Adding and Subtracting Rational Expressions	304
	6.4	Complex Fractions	312
		Mid-Chapter Quiz	320
	6.5	Dividing Polynomials and Synthetic Division	322
	6.6	Solving Rational Equations	330
	6.7	Variation	338
		Chapter Summary	346
		Review Exercises	348
		Chapter Test	352
7 🕨	RAD	ICALS AND COMPLEX NUMBERS	353
	7.1	Radicals and Rational Exponents	354
	7.2	Simplifying Radical Expressions	362
	7.3	Adding and Subtracting Radical Expressions	370
		Mid-Chapter Quiz	378
	7.4	Multiplying and Dividing Radical Expressions	380
	7.5	Radical Equations and Applications	388
	7.6	Complex Numbers	396
		Chapter Summary	404
		Review Exercises	406
		Chapter Test	410
		Cumulative Test: Chapters 5–7	411
8 🕨	QUA	ADRATIC EQUATIONS, FUNCTIONS,	
	AND	D INEQUALITIES	413
	8.1	Solving Quadratic Equations	414
	8.2	Completing the Square	422
	8.3	The Quadratic Formula	430
		Mid-Chapter Quiz	438
	8.4	Graphs of Quadratic Functions	440
	8.5	Applications of Quadratic Equations	448
	8.6	Quadratic and Rational Inequalities	456
		Chapter Summary	464
		Review Exercises	466

9 🕨	EXPONENTIAL AND LOGARITHMIC FUNCTIONS		
	9.1	Exponential Functions	472
	9.2	Composite and Inverse Functions	482
	9.3	Logarithmic Functions	490
		Mid-Chapter Quiz	498
	9.4	Properties of Logarithms	500
	9.5	Solving Exponential and Logarithmic Equations	508
	9.6 Applications		516
		Chapter Summary	524
		Review Exercises	526
		Chapter Test	530
10 •	CON	lics	531
	10.1	Circles and Parabolas	532
	10.2	Ellipses	540
		Mid-Chapter Quiz	548
	10.3	Hyperbolas	550
	10.4	Solving Nonlinear Systems of Equations	558
		Chapter Summary	566
		Review Exercises	568
		Chapter Test	572
		Cumulative Test: Chapters 8–10	573
11 •	SEQ THE	UENCES, SERIES, AND BINOMIAL THEOREM	575
	11.1	Sequences and Series	576
	11.2	Arithmetic Sequences	584
		Mid-Chapter Ouiz	592
	11.3	Geometric Sequences	594
	11.4	The Binomial Theorem	602
		Chapter Summary	610
		Review Exercises	612
		Chapter Test	615

APPENDICES

Appendix A	Introduction to Graphing Calculators (web)*		
Appendix B	Further Concepts in Geometry (web)*B.1 Exploring Congruence and SimilarityB.2 Angles		
Appendix C	Further Concepts in Statistics (web)*		
Appendix D	 Introduction to Logic (web)* D.1 Statements and Truth Tables D.2 Implications, Quantifiers, and Venn Diagrams D.3 Logical Arguments 		
Appendix E	E Counting Principles (web)*		
Appendix F	Appendix F Probability (web)*		
Answers to Oc Index of Appli Index	ld-Numbered Exercises cations	A1 A47 A49	

*Available at the text-specific website www.cengagebrain.com

Preface

Welcome to *Intermediate Algebra Within Reach*, Sixth Edition. I am proud to present to you this new edition. As with all editions, I have been able to incorporate many useful comments from you, our user. And, while much has changed with this revision, you will still find what you expect—a pedagogically sound, mathematically precise, and comprehensive textbook.

I'm very excited about this edition. As I was writing, I kept one thought in mind—provide students what they need to learn algebra *within reach*. As you study from this book, you should notice right away that something is different. I've structured the book so that examples and exercises are on the same page—*within reach*. I am also offering something brand new with this edition: a companion website at **AlgebraWithinReach.com**. This site offers many resources that will help you as you study algebra. All of these resources are just a click away—*within reach*.

My goal for every edition of this textbook is to provide students with the tools that they need to master algebra. I hope that you find the changes in this edition, together with AlgebraWithinReach.com, will accomplish just that.

New To This Edition

REVISED Exercises Within Reach

The exercise sets have been carefully and extensively reviewed to ensure they are relevant and cover all topics suggested by our users. Additionally, the exercises have been completely restructured. Exercises now appear on the *same* page and immediately follow a corresponding example. There is no need to flip back and forth from example to exercise. The end-of-section exercises focus on mastery of conceptual understanding. View and listen to worked-out solutions at AlgebraWithinReach.com.

NEW Data Spreadsheets

Download editable spreadsheets from AlgebraWithinReach.com, and use this data to solve exercises.

	Ron Larson Home	About Contact Purchas
Intermediate 6e	Easy Access Study Guide	Q SEARCH
Solutions / Soluciones	Welcome to AlgebraWithinReach.com	
	Student Resources	
Instructional Videos	The AlgebraWithinReach.com companion site provides a robust selection of resources and tools to assist you in your study of algebra.	Algebra
Math Help	Easy Access Study Guide	Within Reach
🛃 Data Downloads	This 100% free easy access study guide requires no username or password to access the resources.	Sond.
Study Skills	Using the Site	CAREX
✓ Pre & Post Tests	Take advantage of the tools and resources by selecting a feature form the lefthand menu or entering your search terms into the search bar.	RonLarson
Glossary		

NEW AlgebraWithinReach.com

This companion website offers multiple tools and resources to supplement your learning. Access to these features is free. View and listen to worked-out solutions of thousands of exercises in English or Spanish, download data sets, take diagnostic tests, watch lesson videos and much more.

NEW Concept Summary

This simple review of important concepts appears at the end of every section. Each Concept Summary reviews *What*, *How*, and *Why*—what concepts you studied, how to apply the concepts, and why the concepts are important. The Concept Summary includes four exercises to check your understanding.

NEW Math Helps

Additional instruction is available for every example and many exercises at AlgebraWithinReach.com. Just click on *Math Help*.

REVISED Section Objectives

A bulleted list of learning objectives provides you the opportunity to preview what will be presented in the upcoming section.

REVISED Study Skills in Action

Each chapter presents a study skill essential to success in mathematics. Read and apply these throughout the course. Print them out at AlgebraWithinReach.com to keep them as reminders to develop strong study skills.

REVISED Applications

A wide variety of real-life applications are integrated throughout the text in examples and exercises. These applications demonstrate the relevance of algebra in the real world. Many of these applications use current, real data.

REVISED Chapter Summaries

The *Chapter Summary* now includes explanations and examples of the objectives taught in the chapter. Review exercises that cover these objectives are listed to check your understanding of the material.

Trusted Features

Examples

Each example has been carefully chosen to illustrate a particular mathematical concept or problem-solving technique. The examples cover a wide variety of problems and are titled for easy reference. Many examples include detailed, step-by-step solutions with side comments, which explain the key steps of the solution process.

Study Tips

Study Tips offer students specific point-of-use suggestions for studying algebra, as well as pointing out common errors and discussing alternative solution methods. They appear in the margins.

		Section 2.1 Linear I	quations 53
	Solving Linear Equations in	n Nonstandard Form	
	EXAMPLE 4 Solving a L	inear Equation in Nons	tandard Form
Churcher Tim	x + 2 = 2x - 6	Original equation	
A strategy that can help you	x - 2x + 2 = 2x - 2x - 6	Subtract 2x from each	i side.
to isolate x in solving a linear	-x + 2 = -6	Combine like terms.	
equation is to rewrite the original equation so that	-x + 2 - 2 = -6 - 2	Subtract 2 from each	side.
only variable terms are on	-x = -8	Combine like terms.	
and only constant terms are	(-1)(-x) = (-1)(-8)	Multiply each side by	-1.
on the other side.	x = 8	Simplify.	
	The solution is $x = 8$. You can check	this as follows.	
	Check $8 + 2 \stackrel{?}{=} 2(8) - 6$ $10 \stackrel{?}{=} 16 - 6$ 10 = 10	Substitute 8 for <i>x</i> in original ed Simplify. Solution checks.	juation.
	EXAMPLE 5 Solving a L	inear Equation in Nons	tandard Form
	6(y-1) = 2y - 3	Original equation	
	6y - 6 = 2y - 3	Distributive Property	
	6y - 2y - 6 = 2y - 2y - 3	Subtract 2y from each	ı side.
	4y - 6 = -3	Combine like terms.	
	4y - 6 + 6 = -3 + 6	Add 6 to each side.	

Technology Tips

Point-of-use instructions for using graphing calculators or software appear in the margins as *Technology Tips*. These features encourage the use of graphing technology as a tool for visualization of mathematical concepts, for verification of other solution methods, and for help with computations.

Cumulative Review

Each exercise set (except in Chapter 1) is followed by *Cumulative Review* exercises that cover concepts from previous sections. This serves as a review and also a way to connect old concepts with new concepts.

Review	Exercises	
Worked-out solution	s to odd-numbered exercises at AlgebraWith	inReach.com
6.1 Finding the Do Exercises 1-6, function. 1. $f(y) = \frac{3y}{y-8}$ 2. $g(t) = \frac{t+4}{t+1}$	main of a Rational Function In find the domain of the rational	Geometry In Exercises 17 and 18, find the ratio of the area of the shaded portion to the total area of the figure. 17. 1^{2}
3. $f(x) = \frac{2x}{x^2 + 1}$ 4. $g(t) = \frac{t+2}{t^2 + 4}$ 5. $g(u) = \frac{u^2}{u^2 - 1}$	<u>u</u> u + 6	
6. $f(x) = \frac{x - x}{x(x^2 - x)}$	12 16)	6.2
7. Geometry <i>a</i> of 36 square is given by $P = 2\left(w + \frac{3}{2}\right)$ Describe the 8. Average Co to produce <i>x</i> u $\overline{C} = \frac{15,000}{x}$ Describe the	Arectangle of width w inches has an area nches. The perimeter P of the rectangle $\frac{6}{2}$, lomain of the function. St The average cost \overline{C} for a manufacturer its of a product is given by $\frac{0.75x}{2}$.	$\begin{array}{rl} \label{eq:multiplying Rational Expressions In Exercise 19–26, multiply and simplify. \\ 19-26, multiply and simplify. \\ 19, \frac{4}{x}, \frac{x^2}{12} & 20, \frac{3}{y^3}, 5y^3 \\ 21, \frac{7}{8}, \frac{7y}{y}, \frac{y^2}{4x^2} \\ 22, \frac{15(2y)}{3y^3}, \frac{12y}{x} \\ 23, \frac{60c}{z+6}, \frac{z^2-36}{5} \\ 24, \frac{x^2-16}{x}, \frac{z^2-36}{x^2-8x+16} \\ \end{array}$
Simplifying a 1 9-16, simplify th	Rational Expression In Exercises e rational expression.	25. $\frac{u}{2} \cdot \frac{3u - u^2}{4}$
9. $\frac{6x^4y^2}{15xy^2}$	$10. \frac{2(y^3z)^2}{28(yz^2)^2}$	$u = 5 \qquad 4u^{2}$ 26. $x^{2} \cdot \frac{x+1}{x^{2}-x} \cdot \frac{(5x-5)^{2}}{x^{2}+6x+5}$
11. $\frac{5b-15}{30b-120}$	12. $\frac{4a}{10a^2 + 26a}$	Dividing Rational Expressions In Exercises 27–32 divide and simplify.
$13. \ \frac{9x-9y}{y-x}$	14. $\frac{x+3}{x^2-x-12}$	27. $24x^4 \div \frac{\alpha x}{5}$ 28. $\frac{8u^2}{3} \div \frac{u}{9}$ 29. $25y^2 \div \frac{3y}{5}$ 30. $\frac{6}{z^2} \div 4z^2$
15. $\frac{x^2 - 5x}{2x^2 - 50}$	16. $\frac{x^2+3x+9}{x^3-27}$	31. $\frac{x^2 + 3x + 2}{3x^2 + x - 2} \div (x + 2)$ $x^2 - 14x + 48$

Mid-Chapter Quiz

Each chapter contains a *Mid-Chapter Quiz*. View and listen to worked-out solutions at AlgebraWithinReach.com.

Chapter Review

The *Review Exercises* at the end of each chapter contain skill-building and application exercises that are first ordered by section, and then grouped according to the objectives stated at the start of the section. This organization allows you to easily identify the appropriate sections and concepts for study and review.

Chapter Test

Each chapter ends with a *Chapter Test*. View and listen to worked-out solutions at AlgebraWithinReach.com.

Cumulative Test

The *Cumulative Tests* that follow Chapters 4, 7, and 10 provide a comprehensive self-assessment tool that helps you check your mastery of previously covered material. View and listen to worked-out solutions at AlgebraWithinReach.com.

Supplements

Student

Student Solutions Manual

ISBN 978-1-285-41985-5

Author: Ron Larson

The Student Solutions Manual provides detailed, step-by-step solutions to all odd-numbered problems in both the section exercise sets and review exercises. It also contains detailed, step-by-step solutions to all Mid-Chapter Quiz, Chapter Test, and Cumulative Test questions.

Student Workbook

ISBN 978-1-285-41994-7

Author: Maria H. Andersen, Muskegon Community College

Get a head start! The Student Workbook contains assessments, activities and worksheets for classroom discussions, in-class activities, and group work.

Printed Access Card: 978-0-538-73810-1

Online Access Code: 978-1-285-18181-3

Enhanced WebAssign (assigned by the instructor) provides you with instant feedback on homework assignments. This online homework system is easy to use and includes helpful links to textbook sections, video examples, and problem-specific tutorials.

Instructor

Complete Solutions Manual

ISBN 978-1-285-41992-3

Author: Ron Larson

The Complete Solutions Manual provides detailed step-by-step solutions to all problems in the text. It contains Chapter and Final Exam test forms with answer keys as well as individual test items and answers for Chapters 1–11.

Instructor's Resource Binder

ISBN 978-0-538-73675-6

Author: Maria H. Andersen, Muskegon Community College

The Instructor's Resource Binder contains uniquely designed Teaching Guides, which include instruction tips, examples, activities, worksheets, overheads, and assessments with answers to accompany them.

Printed Access Card: 978-0-538-73810-1

Online Access Code: 978-1-285-18181-3

Exclusively from Cengage Learning, Enhanced WebAssign combines the exceptional mathematics content that you know and love with the most powerful online homework solution, WebAssign. Enhanced WebAssign engages students with immediate feedback, rich tutorial content, and interactive, fully customizable eBooks (YouBook), helping students to develop a deeper conceptual understanding of their subject matter. Online assignments can be built by selecting from thousands of text-specific problems or supplemented with problems from any Cengage Learning textbook.

PowerLecture with Examview

ISBN: 978-1-285-41996-1

Author: Ron Larson

This supplement provides the instructor with dynamic media tools for teaching. Create, deliver and customize tests (both print and online) in minutes with *Examview*[®] *Computerized Testing Featuring Algorithmic Equations*. Easily build solution sets for homework or exams using *Solution Builder*'s online solution manual. Microsoft[®] Powerpoint[®] lecture slides including *all* examples from the text, figures from the book, and easy-to-use PDF testbanks, in electronic format, are also included on this DVD-ROM.

Solution Builder

This online instructor database offers complete worked-out solutions to all exercises in the text, allowing you to create customized, secure solutions printouts (in PDF format) matched exactly to the problems you assign in class. For more information, visit www.cengage.com/solutionbuilder.

I would like to thank the many people who have helped me revise the various editions of this text. Their encouragement, criticisms, and suggestions have been invaluable.

Reviewers

Tom Anthony, Central Piedmont Community College Tina Cannon, Chattanooga State Technical Community College LeAnne Conaway, Harrisburg Area Community College and Penn State University Mary Deas, Johnson County Community College Jeremiah Gilbert, San Bernadino Valley College Jason Pallett, Metropolitan Community College-Longview Laurence Small, L.A. Pierce College Dr. Azar Raiszadeh, Chattanooga State Technical Community College Patrick Ward, Illinois Central College

My thanks to Robert Hostetler, The Behrend College, The Pennsylvania State University, David Heyd, The Behrend College, The Pennsylvania State University, and Patrick Kelly, Mercyhurst University, for their significant contributions to previous editions of this text.

I would also like to thank the staff of Larson Texts, Inc., who assisted in preparing the manuscript, rendering the art package, and typesetting and proofreading the pages and the supplements.

On a personal level, I am grateful to my spouse, Deanna Gilbert Larson, for her love, patience, and support. Also, a special thanks goes to R. Scott O'Neil.

If you have suggestions for improving this text, please feel free to write to me. Over the past two decades I have received many useful comments from both instructors and students, and I value these comments very much.

Ron Larson Professor of Mathematics Penn State University www.RonLarson.com

Fundamentals of Algebra

- **1.1** The Real Number System
- **1.2** Operations with Real Numbers
- **1.3** Properties of Real Numbers
- **1.4** Algebraic Expressions
- **1.5** Constructing Algebraic Expressions

MASTERY IS WITHIN REACH!

"I get distracted very easily. If I study at home, other things call out to me. My instructor suggested studying on campus before going home or to work. I didn't like the idea at first, but tried it anyway. After a few times, I realized that it was the best thing for me—I got things done and it took less time. I also did better on my next test."

Cathy Music

See page 27 for suggestions about keeping a positive attitude.

Malyugin/Shutterstock.com

or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.1 The Real Number System

- Understand the set of real numbers and the subsets of real numbers.
- Use the real number line to order real numbers.
- Find the distance between two real numbers.
- Find the absolute value of a real number.

Real Numbers

The numbers you use in everyday life are called real numbers. They are classified into different categories, as shown at the right.

There are other classifications that are not shown in the diagram above. For instance, the set of **integers** can be divided into 3 categories: **negative integers**, zero, and positive integers.

Whole numbers
$$\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

The set of integers

Negative integers Positive integers

EXAMPLE 1 Classifying Real Numbers

Which of the numbers in the set $\left\{-7, -\sqrt{3}, -1, -\frac{1}{5}, 0, \frac{3}{4}, \sqrt{2}, \pi, 5\right\}$ are (a) natural numbers, (b) integers, (c) rational numbers, and (d) irrational numbers?

SOLUTION

- a. Natural numbers: {5}
- **b.** Integers: $\{-7, -1, 0, 5\}$
- c. Rational numbers: $\left\{-7, -1, -\frac{1}{5}, 0, \frac{3}{4}, 5\right\}$
- **d.** Irrational numbers: $\{-\sqrt{3}, \sqrt{2}, \pi\}$

Exercises Within Reach®

Solutions in English & Spanish and tutorial videos at AlgebraWithinReach.com

Classifying Real Numbers In Exercises 1–4, determine which of the numbers in the set are (a) natural numbers, (b) integers, (c) rational numbers, and (d) irrational numbers.

1. $\left\{-6, -\sqrt{6}, -\frac{4}{3}, 0, \frac{5}{8}, 1, \sqrt{2}, 2, \pi, 6\right\}$ **2.** $\left\{-\frac{10}{3}, -\pi, -\sqrt{3}, -1, 0, \frac{2}{5}, \sqrt{3}, \frac{5}{2}, 5, 101\right\}$ **3.** $\left\{-4.2, \sqrt{4}, -\frac{1}{9}, 0, \frac{3}{11}, \sqrt{11}, 5.\overline{5}, 5.543\right\}$ **4.** $\left\{-\sqrt{25}, -\sqrt{6}, -0.\overline{1}, -\frac{5}{3}, 0, 0.85, 3, 110\right\}$

The Real Number Line and Order

The picture that represents the real numbers is called the **real number line**. It consists of a horizontal line with a point (the **origin**) labeled 0. Numbers to the left of zero are **negative** and numbers to the right of zero are **positive**.

The Real Number Line

Zero is neither positive nor negative. So, to describe a real number that might be either positive or zero, you can use the term **nonnegative real number**.

Each point on the real number line corresponds to exactly one real number, and each real number corresponds to exactly one point on the real number line. When you draw the point (on the real number line) that corresponds to a real number, you are **plotting** the real number.

EXAMPLE 2 Plotting Real Numbers

Plot each number on the real number line.

a.	$-\frac{5}{3}$	b.	2.3
c.	$\frac{9}{4}$	d.	-0.3

SOLUTION

All four points are shown in the figure.

- **a.** The point representing the real number $-\frac{5}{3} = -1.666...$ lies between -2 and -1, but closer to -2, on the real number line.
- **b.** The point representing the real number 2.3 lies between 2 and 3, but closer to 2, on the real number line.
- c. The point representing the real number $\frac{9}{4} = 2.25$ lies between 2 and 3, but closer to 2, on the real number line. Note that the point representing $\frac{9}{4}$ lies slightly to the left of the point representing 2.3.
- **d.** The point representing the real number -0.3 lies between -1 and 0, but closer to 0, on the real number line.

Solutions in English & Spanish and tutorial videos at AlgebraWithinReach.com

Plot	ting Real Numbers	In Exercises 5 and	6, plot the numbers on the real num	nber line.
5.	(a) 3	(b) $\frac{5}{2}$	(c) $-\frac{7}{2}$	(d) -5.2
6.	(a) 8	(b) $\frac{4}{3}$	(c) -6.75	(d) $-\frac{9}{2}$

Exercises Within Reach®

Order on the Real Number Line

If the real number *a* lies to the left of the real number *b* on the real number line, then *a* is **less than** *b*, which is written as

a < b.

This relationship can also be described by saying that b is greater than a and writing b > a. The expression $a \le b$ means that a is less than or equal to b, and the expression $b \ge a$ means that b is greater than or equal to a. The symbols $<, >, \le$, and \ge are called inequality symbols.

EXAMPLE 3 Orderin

Ordering Real Numbers

Place the correct inequality symbol (< or >) between the real numbers.

Exercises Within Reach®

Solutions in English & Spanish and tutorial videos at AlgebraWithinReach.com

Ordering Real Numbers In Exercises 7-16, place the correct inequality symbol (< or >) between the real numbers.

Distance on the Real Number Line

Distance Between Two Real Numbers

If a and b are two real numbers such that $a \le b$, then the **distance between** a and b is given by b - a.

Note from this definition that if a = b, the distance between a and b is zero. If $a \neq b$, then the distance between a and b is positive.

EXAMPLE 4 Finding the Distance Between Two Numbers

Find the distance between the real numbers.

c.
$$-4$$
 and 0 **d.** 1 and $-\frac{1}{2}$

SOLUTION

a. Because $-2 \le 3$, the distance between -2 and 3 is

1

b. Because $0 \le 4$, the distance between 0 and 4 is

4 - 0 = 4.

c. Because $-4 \le 0$, the distance between -4 and 0 is

$$0 - (-4) = 0 + 4 = 4$$

d. Because $-\frac{1}{2} \le 1$, let $a = -\frac{1}{2}$ and b = 1. So, the distance between 1 and $-\frac{1}{2}$ is $1 - \left(-\frac{1}{2}\right) = 1 + \frac{1}{2} = 1\frac{1}{2}.$

Solutions in English & Spanish and tutorial videos at AlgebraWithinReach.com

Finding the Distance Between Two Numbers In Exercises 17–28, find the distance between the real numbers.

17.	4 and 10	18.	75 and 20
19.	-12 and 7	20.	-54 and 32
21.	18 and -32	22.	14 and -6
23.	-8 and 0	24.	0 and 125
25.	0 and 35	26.	-35 and 0
27.	-6 and -9	28.	-12 and -7

Study Tip

Recall that when you subtract a negative number, as in Example 4(a), you add the opposite of the second number to the first. Because the opposite of -2 is 2, you add 2 to 3.

Exercises Within Reach®

Because opposite numbers lie the same distance from 0 on the real number line, they have the same absolute value. So, |5| = 5and |-5| = 5.

Finding Absolute Value

Two real numbers are called **opposites** of each other if they lie the same distance from, but on opposite sides of, 0 on the real number line.

Opposites and Additive Inverses

Let *a* be a real number.

1. -a is the opposite of a.

2. -(-a) = a

3. a + (-a) = 0

Double negative Additive inverse

Definition of Absolute Value

If *a* is a real number, then the **absolute value** of *a* is

$$|a| = \begin{cases} a, & \text{if } a \ge 0\\ -a, & \text{if } a < 0 \end{cases}$$

Evaluating Absolute Values

- **a.** |-10| = 10
- **b.** $\left|\frac{3}{4}\right| = \frac{3}{4}$

The absolute value of $\frac{3}{4}$ is $\frac{3}{4}$.

The absolute value of -10 is 10.

c.
$$-|-6| = -(6) = -6$$
 The opposite of $|-6|$ is -6.

EXAMPLE 6 Comparing Real Numbers

Place the correct symbol (<, >, or =) between the real numbers.

a.
$$|-2|$$
 1 **b.** $|-4|$ |4| **c.** 2 $-|-2|$

SOLUTION

- **a.** |-2| > 1, because |-2| = 2 and 2 is greater than 1.
- **b.** |-4| = |4|, because |-4| = 4 and |4| = 4.
- c. 2 > -|-2|, because -|-2| = -2 and 2 is greater than -2.

Exercises Within Reach®

Solutions in English & Spanish and tutorial videos at AlgebraWithinReach.com

Evaluating an Absolute Value In Exercises 29–34, evaluate the expression.

29.	10	30. 62	31. -225
32.	-14	33. $-\left -\frac{3}{4}\right $	34. $-\left \frac{3}{8}\right $

Comparing Real Numbers In Exercises 35–38, place the correct symbol (<, >, or =) between the real numbers.

Application EXAMPLE 7 Translating Words into Symbols

Write each statement using inequality symbols.

- **a.** A bicycle racer's speed *s* is at least 16 miles per hour and at most 28 miles per hour.
- **b.** The tire pressure *p* is at least 30 pounds per square inch and no more than 35 pounds per square inch.
- c. The price p is less than \$225.
- **d.** The average *a* will exceed 5000.

SOLUTION

Exercises Within Reach®

Solutions in English & Spanish and tutorial videos at AlgebraWithinReach.com

Translating Words into Symbols In Exercises 39-44, write the statement using inequality symbols.

- **39.** The weight on the elevator cannot exceed 2500 pounds.
- **40.** You can drive at most 65 miles per hour on the interstate.
- **41.** The contestant's weight must be more than 200 pounds.
- **42.** You can save no more than \$2 with the coupon.
- **43.** A person must be 52 inches tall or taller to ride the roller coaster.
- **44.** It takes your friend at least 8 minutes and at most 10 minutes to run a mile.
- **45.** Checking Account During the past month, the balance of your checking account did not exceed \$700 and did not drop below \$200. Write this statement using inequality symbols.
- **46.** *Reading* Last night you read more than 40 pages and less than 70 pages of a new book. Write this statement using inequality symbols.

Martin Lehmann/Shutterstock.com; Utemov Alexey/Shutterstock.com

Concept Summary: Ordering Real Numbers

What

When you are asked to order two **real numbers**, the goal is to determine which of the two numbers is greater.

EXAMPLE

Order
$$-\frac{6}{3}$$
 and $-\frac{5}{2}$.

How

You can use the **real number line** to order two real numbers. For example, to order two fractions, rewrite them with the same denominator, or rewrite them as decimals. Then **plot** each number on a number line.

EXAMPLE

why

There are many situations in which you need to order real numbers. For instance, to determine the standings at a golf tournament, you order the scores of the golfers.

Exercises Within Reach®

Worked-out solutions to odd-numbered exercises at AlgebraWithinReach.com

Concept Summary Check

- **47.** Using a Number Line Explain how the number line above shows that -2.5 < -2.
- **48.** *Using a Number Line* Two real numbers are plotted on the real number line. How can you tell which number is greater?
- **49.** *Ordering Methods* Which method for ordering fractions is shown in the solution above?
- 50. *Rewriting Fractions* Describe another way to rewrite and order $-\frac{6}{3}$ and $-\frac{5}{2}$.

Extra Practice

Identifying Numbers In Exercises 51-54, list all members of the set.

51. The integers between -5.8 and 3.2

52. The even integers between -2.1 and 10.5

53. The odd integers between π and 10

54. The prime numbers between 4 and 25

Approximating and Ordering Numbers In Exercises 55–58, approximate the two numbers and order them.

Plotting Numbers In Exercise 65–74, plot the number and its opposite on the real number line. **Determine the distance of each from 0.**

65.	-7	66.	-4
67.	5	68.	6
69.	$-\frac{3}{5}$	70.	$\frac{7}{4}$
71.	$\frac{5}{3}$	72.	$-\frac{3}{4}$
73.	-4.25	74.	3.5

Translating Words into Symbols In Exercise 75–78, write the statement using inequality notation.

75.	x is negative.	76.	<i>y</i> is more than 25.
77.	<i>u</i> is at least 16.	78.	<i>x</i> is nonnegative.

79. Coin Collection Write a statement represented by 80. Basketball Write a statement represented by 30 < x < 50, where x is the number of coins in a jar. $280 \le x \le 310$, where x is the number points a basketball player scored this season.

Think About It In Exercise 81–84, find two possible values of a.

81.	a = 4	82. $- a = -7$

83. The distance between *a* and 3 is 5. **84.** The distance between a and -1 is 6.

Identifying Real Numbers In Exercise 85–92, give three examples of numbers that satisfy the given conditions.

85.	A real number that is a negative integer	86.	A real number that is a whole number
87.	A real number that is a not a rational number	88.	A real number that is not an irrational number
89.	A rational number that is not an integer	90.	A rational number that is not a negative number
91.	A real number that is not a positive rational number	92.	An integer that is not a whole number

- **91.** A real number that is not a positive rational number
- 95. Number Sense Compare the rational numbers 0.15 and $0.\overline{15}$.
- 96. Precision Is there a difference between saying that a real number is positive and saying that a real number is nonnegative? Explain your answer.

Explaining Concepts

True or False? In Exercises 93 and 94, decide whether the statement is true or false. Justify your answer.

- 93. Every real number is either rational or irrational.
- 94. The distance between a number b and its opposite is equal to the distance between 0 and twice the number b.